长沙桑拿会所论坛,长沙桑拿洗浴休闲会所

Another good example of this type of engine was the Eole, which had eight opposed pistons, each pair of which was actuated by a common combustion chamber at the centre of the engine, two crankshafts being placed at the outer ends of the engine. This reversal of the ordinary arrangement had two advantages; it simplified induction, and further obviated the need for cylinder heads, since the explosion drove at two piston heads instead of at one piston head and the top of the cylinder; against this, however, the engine had to be constructed strongly enough to withstand the longitudinal stresses due to the explosions, as the cranks are placed on the outer ends and the cylinders and crank-cases take the full force of each explosion. Each crankshaft drove a separate air-screw.

This pattern of engine was taken up by the Dutheil-Chambers firm in the pioneer days of aircraft, when the firm in question produced seven different sizes of horizontal engines. The Demoiselle monoplane used by Santos-Dumont in 1909 was fitted with a two-cylinder, horizontally-opposed Dutheil-Chambers engine, which developed 25 brake horse-power at a speed of 1,100 revolutions per minute, the cylinders being of 5 inches bore by 5?1 inches stroke, and the total weight of the engine being some 120 lbs. The crankshafts of these engines were usually fitted with steel flywheels in order to give a very even torque, the wheels being specially constructed with wire spokes. In all the Dutheil-Chambers engines water cooling was adopted, and the cylinders were attached to the444 crank cases by means of long bolts passing through the combustion heads.

For their earliest machines, the Clement-Bayard firm constructed horizontal engines of the opposed piston type. The best known of these was the 30 horse-power size, which had cylinders of 4?7 inches diameter by 5?1 inches stroke, and gave its rated power at 1,200 revolutions per minute. In this engine the steel cylinders were secured to the crank case by flanges, and radiating ribs were formed around the barrel to assist the air-cooling. Inlet and exhaust valves were actuated by push-rods and rockers actuated from the second motion shaft mounted above the crank case; this shaft also drove the high-tension magneto with which the engine was fitted. A ring of holes drilled round each cylinder constituted auxiliary ports which the piston uncovered at the inner end of its stroke, and these were of considerable assistance not only in expelling exhaust gases, but also in moderating the temperature of the cylinder and of the main exhaust valve fitted in the cylinder head. A water-cooled Clement-Bayard horizontal engine was also made, and in this the auxiliary exhaust ports were not embodied; except in this particular, the engine was very similar to the water-cooled Darracq.

The American Ashmusen horizontal engine, developing 100 horse-power, is probably the largest example of this type constructed. It was made with six cylinders arranged on each side of a common crank case, with long bolts passing through the cylinder heads to assist in holding them down. The induction piping and valve-operating gear were arranged below the engine, and the half-speed shaft carried the air-screw.

445 Messrs Palons and Beuse, Germans, constructed a light-weight, air-cooled, horizontally-opposed engine, two-cylindered. In this the cast-iron cylinders were made very thin, and were secured to the crank case by bolts passing through lugs cast on the outer ends of the cylinders; the crankshaft was made hollow, and holes were drilled through the webs of the connecting-rods in order to reduce the weight. The valves were fitted to the cylinder heads, the inlet valves being of the automatic type, while the exhaust valves were mechanically operated from the cam-shaft by means of rockers and push-rods. Two carburettors were fitted, to reduce the induction piping to a minimum; one was attached to each combustion chamber, and ignition was by the normal high-tension magneto driven from the half-time shaft.

There was also a Nieuport two-cylinder air-cooled horizontal engine, developing 35 horse-power when running at 1,300 revolutions per minute, and being built at a weight of 5 lbs. per horse-power. The cylinders were of 5?3 inches diameter by 5?9 inches stroke; the engine followed the lines of the Darracq and Dutheil-Chambers pretty closely, and thus calls for no special description.

The French Kolb-Danvin engine of the horizontal type, first constructed in 1905, was probably the first two-stroke cycle engine designed to be applied to the propulsion of aircraft; it never got beyond the experimental stage, although its trials gave very good results. Stepped pistons were adopted, and the charging pump at one end was used to scavenge the power cylinder at the other ends of the engine, the transfer ports being formed in the main casting. The openings of these446 ports were controlled at both ends by the pistons, and the location of the ports appears to have made it necessary to take the exhaust from the bottom of one cylinder and from the top of the other. The carburetted mixture was drawn into the scavenging cylinders, and the usual deflectors were cast on the piston heads to assist in the scavenging and to prevent the fresh gas from passing out of the exhaust ports.
VI THE TWO-STROKE CYCLE ENGINE
Although it has been little used for aircraft propulsion, the possibilities of the two-stroke cycle engine render some study of it desirable in this brief review of the various types of internal combustion engine applicable both to aeroplanes and airships. Theoretically the two-stroke cycle engine—or as it is more commonly termed, the ‘two-stroke,’ is the ideal power producer; the doubling of impulses per revolution of the crankshaft should render it of very much more even torque than the four-stroke cycle types, while, theoretically, there should be a considerable saving of fuel, owing to the doubling of the number of power strokes per total of piston strokes. In practice, however, the inefficient scavenging of virtually every two-stroke cycle engine produced nullifies or more than nullifies its advantages over the four-stroke cycle engine; in many types, too, there is a waste of fuel gases through the exhaust ports, and much has yet to be done in the way of experiment and resulting design before the two-stroke cycle engine can be regarded as equally reliable, economical, and powerful with its elder brother.

The first commercially successful engine operating on the two-stroke cycle was invented by Mr Dugald Clerk, who in 1881 proved the design feasible. As is more or less generally understood, the exhaust gases448 of this engine are discharged from the cylinder during the time that the piston is passing the inner dead centre, and the compression, combustion, and expansion of the charge take place in similar manner to that of the four-stroke cycle engine. The exhaust period is usually controlled by the piston overrunning ports in the cylinder at the end of its working stroke, these ports communicating direct with the outer air—the complication of an exhaust valve is thus obviated; immediately after the escape of the exhaust gases, charging of the cylinder occurs, and the fresh gas may be introduced either through a valve in the cylinder head or through ports situated diametrically opposite to the exhaust ports. The continuation of the outward stroke of the piston, after the exhaust ports have been closed, compresses the charge into the combustion chamber of the cylinder, and the ignition of the mixture produces a recurrence of the working stroke.

Thus, theoretically, is obtained the maximum of energy with the minimum of expenditure; in practice, however, the scavenging of the power cylinder, a matter of great importance in all internal combustion engines, is often imperfect, owing to the opening of the exhaust ports being of relatively short duration; clearing the exhaust gases out of the cylinder is not fully accomplished, and these gases mix with the fresh charge and detract from its efficiency. Similarly, owing to the shorter space of time allowed, the charging of the cylinder with the fresh mixture is not so efficient as in the four-stroke cycle type; the fresh charge is usually compressed slightly in a separate chamber—crank case, independent cylinder, or charging pump, and is delivered to the working cylinder during the beginning of the return449 stroke of the piston, while in engines working on the four-stroke cycle principle a complete stroke is devoted to the expulsion of the waste gases of the exhaust, and another full stroke to recharging the cylinder with fresh explosive mixture.

Theoretically the two-stroke and the four-stroke cycle engines possess exactly the same thermal efficiency, but actually this is modified by a series of practical conditions which to some extent tend to neutralise the very strong case in favour of the two-stroke cycle engine. The specific capacity of the engine operating on the two-stroke principle is theoretically twice that of one operating on the four-stroke cycle, and consequently, for equal power, the former should require only about half the cylinder volume of the latter; and, owing to the greater superficial area of the smaller cylinder, relatively, the latter should be far more easily cooled than the larger four-stroke cycle cylinder; thus it should be possible to get higher compression pressures, which in turn should result in great economy of working. Also the obtaining of a working impulse in the cylinder for each revolution of the crankshaft should give a great advantage in regularity of rotation—which it undoubtedly does—and the elimination of the operating gear for the valves, inlet and exhaust, should give greater simplicity of design.

In spite of all these theoretical—and some practical—advantages the four-stroke cycle engine was universally adopted for aircraft work; owing to the practical equality of the two principles of operation, so far as thermal efficiency and friction losses are concerned, there is no doubt that the simplicity of design (in theory) and high power output to weight ratio (also in 长沙桑拿哪里最好 theory)450 ought to have given the ‘two-stroke’ a place on the aeroplane. But this engine has to be developed so as to overcome its inherent drawbacks; better scavenging methods have yet to be devised—for this is the principal drawback—before the two-stroke can come to its own as a prime mover for aircraft.

Mr Dugald Clerk’s original two-stroke cycle engine is indicated roughly, as regards principle, by the accompanying diagram, from which it will be seen that the elimination of the ordinary inlet and exhaust valves of the four-stroke type is more than compensated by a separate cylinder which, having a piston worked from the connecting-rod of the power cylinder, was used to charging, drawing the mixture from the carburettor past the valve in the top of the charging cylinder, and then forcing it through the connecting pipe 长沙桑拿论坛网 into the power cylinder. The inlet valves both on the charging and the power cylinders are automatic; when the power piston is near the bottom of its stroke the piston in the charging cylinder is compressing the carburetted air, so that as soon as the pressure within the power cylinder is relieved by the exit of the burnt gases through the exhaust ports the pressure in the charging cylinder causes the valve in the head of the power cylinder to open, and fresh mixture flows into the cylinder, replacing the exhaust gases. After the piston has again covered the exhaust ports the mixture begins to be compressed, thus automatically closing the inlet valve. Ignition occurs near the end of the compression stroke, and the working stroke immediately follows, thus giving an impulse to the crankshaft on every down stroke of the piston. If 长沙桑拿洗浴全攻略 the

长沙桑拿洗浴

scavenging of the cylinder were complete, and the cylinder were to451 receive a full charge of fresh mixture for every stroke, the same mean effective pressure as is obtained with four-stroke cycle engines ought to be realised, and at an equal speed of rotation this engine should give twice the power obtainable from a four-stroke cycle engine of equal dimensions. This result was not achieved, and, with the improvements in construction brought about by experiment up to 1912, the output was found to be only about fifty per cent more than that of a four-stroke cycle engine of the same size, so that, when the charging cylinder is included, this engine has a greater weight per horse-power, while the lowest rate of fuel consumption recorded was 0.68 lb. per horse-power per hour.
Dugald Clerk’s Two-stroke Cycle Engine.

In 18长沙桑拿休闲娱乐会所91 Mr Day

长沙桑拿按摩贴吧

invented a two-stroke cycle engine which used the crank case as a scavenging chamber, and a very large number of these engines have been built for industrial purposes. The charge of carburetted air is drawn through a non-return valve into the crank chamber during the upstroke of the piston, and452 compressed to about 4 lbs. pressure per square inch on the down stroke. When the piston approaches the bottom end of its stroke the upper edge first overruns an exhaust port, and almost immediately after uncovers an inlet port on the opposite side of the cylinder and in communication with the crank chamber; the entering charge, being under pressure, assists in expelling the exhaust gases from the cylinder. On the next upstroke the charge is compressed into the combustion space of the cylinder, a further charge simultaneously 长沙桑拿攻略 entering

长沙桑拿论坛体验

the crank case to be compressed after the ignition for the working stroke. To prevent the incoming charge escaping through the exhaust ports of the cylinder a deflector is formed on the top of the piston, causing the fresh gas to travel in an upward direction, thus avoiding as far as possible escape of the mixture to the atmosphere. From experiments conducted in 1910 by Professor Watson and Mr Fleming it was found that the proportion of fresh gases which escaped unburnt through the exhaust ports diminished with increase of speed; at 600 revolutions per minute about 36 per cent of the fresh charge was lost; at 1,200 revolutions per minute this was reduced to 20 per cent, and at 1,500 revolutions it was still farther reduced to 6 per cent.

So much for the early designs. With regard to engines of this type 2019长沙桑拿论坛 specially constructed for use with aircraft, three designs call for special mention. Messrs A. Gobe and H. Diard, Parisian engineers, produced an eight-cylindered two-stroke cycle engine of rotary design, the cylinders being co-axial. Each pair of opposite pistons was secured together by a rigid connecting rod, connected to a pin on a rotating crankshaft which was mounted eccentrically to the axis of rotation453 of the cylinders. The crankshaft carried a pinion gearing with an internally toothed wheel on the transmission shaft which carried the air-screw. The combustible mixture, emanating from a common supply pipe, was led through conduits to the front ends of the cylinders, in which the charges were compressed before being transferred to the working spaces through ports in tubular extensions carried by the pistons. These extensions had also exhaust ports, registering with ports in the cylinder which communicated with the outer air, and the extensions slid over depending cylinder heads attached to the crank case by long studs. The pump charge was compressed in one end of each cylinder, and the pump spaces each delivered into their corresponding adjacent combustion spaces. The charges entered the pump spaces during the suction period through passages which communicated with a central stationary supply passage at one end of the crank case, communication being cut off when the inlet orifice to the passage passed out of register with the port in the stationary member. The exhaust ports at the outer end of the combustion space opened just before and closed a little later than the air ports, and the incoming charge assisted in expelling the exhaust gases in a manner similar to that of the earlier types of two-stroke cycle engine. The accompanying rough diagram assists in showing the working of this engine.
The Gobe and Diard Co-axial Two-stroke Engine.